
New York Health Benefit Exchange

Blueprint Summary

Section 9.3.2 Test Plan and Test Cases

October 26, 2012

Approved By Date Signature/Initials Sign Off

Track Name Plan Management Larry Toole 8/27/2012 L.T.

(Email attached in SharePoint > Plan Management >

Testing > Approval Sheet)

Release # 1

Sprint # 4

Resource Name % Committed Assumptions Clarifications/Risks Dependencies Comments Out of Scope

Nilesh Patel 100%

Pragati Shrestha 100%

Test Plan Version # Date Reviewed by Comments/Updates

0.1 8/22/2012 Parampreet Sidana Initial Draft

0.2 8/24/2012 Larry Toole

0.3 8/27/2012

Incorporated the changes as suggested by Larry Toole.

- Defined the prototypes in user stories

- Added missing steps for PM_R1_SP3_US37.1.1_TC002

- Added missing pre-conditions for test cases for user

story 37.1.1

Test Plan Cover

Test Plan

Overview

Epic User Story Name Comments

6907 174: As the Plan Management Sprint

team, I want to create the data model

so that I can accurately store plan

information in the Exchange.(Technical

Story)

User Story Name Type of Test Test Scenario Test Case Number &Name Test Complexity To be Included in Regression? Manual or Automated Testing Phase

Data Validation ISSUER_DTL Table with valid data elements and records PM_R1_SP3_US174_TC001_Verify that the ISSUER_DTL

table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_DTL Table with valid data elements and records PM_R1_SP3_US174_TC002_Verify that the PLAN_DTL

table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_SERVICE_AREA_DTL Table with valid data elements and

records

PM_R1_SP3_US174_TC003_Verify that the

PLAN_SERVICE_AREA_DTL table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_ACCREDITATION_DTL table with valid data elements and

records

PM_R1_SP3_US174_TC004_Verify that the

PLAN_ACCREDITATION_DTL table exists in the

database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_PREMIUM_DTL Table with valid data elements and records PM_R1_SP3_US174_TC005_Verify that the

PLAN_PREMIUM_DTL table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation FORMULARY_DTL Table with valid data elements and records PM_R1_SP3_US174_TC006_Verify that the

FORMULARY_DTL table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_BENEFIT_SERVICES_REF Table with valid data elements and

records

PM_R1_SP3_US174_TC007_Verify that the

PLAN_BENEFIT_SERVICES_REF table exists in the

database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_BENEFIT_SERVICES_COST_SHARING_DTL Table with valid

data elements and records

PM_R1_SP3_US174_TC008_Verify that the

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL table

exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation SBC_SCENARIO_RESULTS_DTL Table with valid data elements and

records

PM_R1_SP3_US174_TC009_Verify that the

SBC_SCENARIO_RESULTS_DTL table exists in the

database

2: Medium Complexity No Manual Funtional Testing

Data Validation SERVICE_AREA_REF Table with valid data elements and records PM_R1_SP3_US174_TC010_Verify that the

SERVICE_AREA_REF table exists in the database

2: Medium Complexity No Manual Funtional Testing

The test plan is designed as a baseline to guide the test team in identifying the scope to be tested, what is to be included in the testing effort,

what tools will be used, the break down of the test cases and identifying risk areas, assumptions and dependencies.

174: As the Plan Management

Sprint team, I want to create the

data model so that I can

accurately store plan information

in the Exchange.(Technical Story)

Data Validation ZIP_SERVICE_AREA_REF Table with valid data elements and records PM_R1_SP3_US174_TC011_Verify that the

Zip_Service_Area table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PM_MASTER_DATA with valid data elements and records PM_R1_SP3_US174_TC012_Verify that the

PM_MASTER_DATA table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PROVIDER_NETWORK_PHYSICIAN_DTL Table with valid data

elements and records

PM_R1_SP3_US174_TC013_Verify that the

PROVIDER_NETWORK_PHYSICIAN_DTL table exists in

the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PROVIDER_NETWORK_ANCILLARY_DTL Table with valid data

elements and records

PM_R1_SP3_US174_TC014_Verify that the

PROVIDER_NETWORK_ANCILLARY_DTL table exists in

the database

2: Medium Complexity No Manual Funtional Testing

Data Validation PLAN_QUALITY_DTL Table with valid data elements and records PM_R1_SP3_US174_TC015_Verify that the

PLAN_QUALITY_DTL table exists in the database

2: Medium Complexity No Manual Funtional Testing

Data Validation CHIP_PREMIUM_DTL Table with valid data elements and records PM_R1_SP3_US174_TC016_Verify that the

CHIP_PREMIUM_DTL table exists in the database

2: Medium Complexity No Manual Funtional Testing

Test Types To be Included in Regression Complexities of TC
Manual or Automated

Functional / Positive Yes 1: High Complexity Manual

GUI No 2: Medium Complexity Automated

Negative Does not Apply 3: Low Complexity Both

Data Validation

Interfaces

Compatibility

Exceptions

Test Cases & Defects

User Story Name Total No of test cases written Comments

174: As the Plan Management Sprint

team, I want to create the data model

so that I can accurately store plan

information in the

Exchange.(Technical Story)

16

IE 7 IE 8 IE 9

The ISSUER_DTL table must be present

in the database

ISSUER_DTL Table with valid data elements

and records

PM_R1_SP3_US174_TC001_Verify that

the ISSUER_DTL table exists in the

database 1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of Issuer table:

DESC ISSUER_DTL

All the column names with their data types and field size from the

ISSUER_DTL table are displayed:

ISSUER_ID,

ISSUER_LEGAL_NAME, Alpha-Numeric, X(220)

FEDERAL_IDENTIFIER, Alpha-Numeric, X(9)

NAIC_COMPANY_CODE, Alpha-Numeric, 9(5)

NAIC_GROUP_CODE, Alpha-Numeric, 9(5)

HHS_ISSUER_ID, Numeric, 9(5)

ISSUER_HOLDING_COMPANY_NAME, Alpha-Numeric, X(220)

ISSUER_ADDRESS_1, Alpha-Numeric, X(50)

ISSUER_ADDRESS_2, Alpha-Numeric, X(50)

ISSUER_ADDRESS_3, Alpha-Numeric, X(50)

ISSUER_ADDRESS_CITY, Alpha-Numeric, X(25)

ISSUER_ADDRESS_STATE, Alpha-Numeric, X(2)

ISSUER_ADDRESS_ZIP, Numeric, X(5)

ISSUER_WEBSITE, Alpha-Numeric, X(100)

ISSUER_STATE, Alpha-Numeric, X(2)

ISSUER_THIRD_PARTY_FILER, Boolean, X(1)

ISSUER_PHONE, Numeric, X(15)

ISSUER_PHONE_EXTENSION, Numeric, X(5)

ISSUER_STATE_ID, Alpha-Numeric, X(50)

ISSUER_CONSUMER_FACING_WEBSITE, Alpha-Numeric, X(100)

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date.

3

Run the query to verify the number of records in

Issuer table equals the records obtained from Data

Source:

Select Count (*) from ISSUER_DTL

The function must return the number of records in ISSUER_DTL

table

Step number Test Step name Expected Results Defect ID Defect StatusTest Scenario

174: As the Plan Management Sprint

team, I want to create the data model

so that I can accurately store plan

information in the

Exchange.(Technical Story)

Test Case/Step Result

User Story Name Test Pre Conditions Test Case Number & Name

4

Run the query to verify that primary key,

"ISSUER_ID and ISSUER_SENT_TIMESTAMP" has

unique values:

Select ISSUER_ID, ISSUER_SENT_TIMESTAMP,

Count (*)

From Issuer_DTL

Group By ISSUER_ID, ISSUER_SENT_TIMESTAMP

Having Count (*) > 1

The query should not return any records

5

Run the query to verify the relationship between

ISSUER_DTL and PLAN_DTL tables:

Select Issuer_DTL.ISSUER_ID ,

ISSUER_DTL.ISSUER_LEGAL_NAME,

Plan_DTL.PLAN_MARKETING_NAME

From ISSUER_DTL

INNER JOIN Plan_DTL

ON Issuer_DTL.ISSUER_ID = Plan_DTL.ISSUER_ID

ORDER BY ISSUER_LEGAL_NAME

The function must return all the Issuer with different Plans attached

to them

The Plan Table must be present in the

database

PLAN_DTL Table with valid data elements

and records

PM_R1_SP3_US174_TC002_Verify that

the PLAN_DTL table exists in the

database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PLAN_DTL table:

DESC PLAN_DTL

All the column names with their data types and field size from the

PLAN_DTL table are displayed:

ISSUER_ID, Alpha-Numeric, X(50)

"Plan_ID, Alpha-Numeric, X(50)

"

PLAN_MARKETING_NAME, Alpha-Numeric, X(220)

PLAN_HIOS_PRODUCT_ID, Alpha-Numeric, X(50)

PLAN_METAL_LEVEL, Alpha-Numeric, X(15)

PLAN_HSA_ELIGIBLE, Boolean, X(1)

PLAN_CHILD_ONLY_OFFERING, Boolean, X(1)

PLAN_PRODUCT_TYPE, Alpha-Numeric, X(5)

PLAN_STND_ALONE_DNTL_PLN_ID, Alpha-Numeric, X(50)

PLAN_STND_ALONE_DNTL_PROD_TYPE, Alpha-Numeric, X(5)

PLAN_SUM_OF_BENEFITS_CVRG_URL, Alpha-Numeric, X(100)

PLAN_ENROLLMENT_PAYMENT_URL, Alpha-Numeric, X(100)

PLAN_NEW_OR_EXISTING_IND, Boolean, X(1)

PLAN_ENROLLMENT_OPEN_DATE, Date,

PLAN_ENROLLMENT_CLOSE_DATE, Date,

PLAN_ADMINISTRATIVE_FEES, Float, 9(12,2)

PLAN_ADDL_ADMINISTRATIVE_SPECS, Alpha-Numeric, X(500)"

PLAN_PRIM_CARE_PHYSICAL_REQD, Boolean, X(1)

PLAN_SELF_DIRECTED_ACCOUNT, Boolean, X(1)

PLAN_MEDICAL_RECORDS_CVRG, Boolean, X(1)

PLAN_OUT-OF-COUNTRY_COVERAGE, Boolean, X(1)

PLAN_OUT_OF_SERVICEAREA_CVRG, Boolean, X(1)

PLAN_NATIONAL_NETWORK, Boolean, X(1)

PLAN_AV_CAL_OUTPUT_NUMBER, Float, 9(4,1)

PLAN_L_COB_MOOP_ADL_BEN_AB_EHB, Float

3

Run the query to verify the number of records in

PLAN_DTL table equals the records obtained from

Data Source:

Select Count (*) from PLAN_DTL

The function must return the number of records in Plan table

4

Run the query to verify that primary key, "PLAN_ID

and PLAN_YEAR" has unique values:

Select PLAN_ID, PLAN_YEAR ,Count (*)

From PLAN_DTL

Group By PLAN_ID, PLAN_YEAR

Having Count (*) > 1

The query should not return any records

The Plan_Service_Area table must be

present in the database

PLAN_SERVICE_AREA_DTL Table with valid

data elements and records

PM_R1_SP3_US174_TC003_Verify that

the PLAN_SERVICE_AREA_DTL table

exists in the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PLAN_SERVICE_AREA_DTL:

DESC PLAN_SERVICE_AREA_DTL

All the column names with their data types and field size from the

PLAN_SERVICE_AREA_DTL table are displayed:

PLAN_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Numeric, X(4)

PLAN_SERVICE_AREA, Alpha-Numeric, X(3)

PLAN_COUNTY_APPROVAL_STATUS (Only in Staging), Boolean, X(1),

TRUE, N

PLAN_REJECTION_COMMENTS (Only in Staging), Alpha-Numeric,

X(500), TRUE, N

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date.

3

Run the query to verify the number of records in

PLAN_SERVICE_AREA_DTL equals the records

obtained from Data Source:

Select Count (*) from PLAN_SERVICE_AREA_DTL

The function must return the number of records in

PLAN_SERVICE_AREA_DTL table

4

Run the query to verify the relationship between

PLAN_SERVICE_AREA_DTL and PLAN_DTL tables:

Select PLAN_SERVICE_AREA_DTL.PLAN_ID,

PLAN_SERVICE_AREA_DTL.Service.Service_Area_C

ode,

From PLAN_SERVICE_AREA_DTL

INNER JOIN Plan

ON PLAN_SERVICE_AREA_DTL.PLAN_ID =

PLAN_DTL.PLAN_ID

ORDER BY PLAN_ID

The function must return plans allosicated with different service

areas

PLAN_ACCREDITATION_DTL table must

be present in the database

PLAN_ACCREDITATION_DTL table with

valid data elements and records

PM_R1_SP3_US174_TC004_Verify that

the PLAN_ACCREDITATION_DTL table

exists in the database
1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PLAN_ACCREDITATION_DTL table:

DESC PLAN_ACCREDITATION_DTL

All the column names with their data types and field size from the

Plan_Accreditation table are displayed:

Plan_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Numeric, 9(4)

ACCREDITATION_ID, Numeric, X(50)

ACCREDITATION_ENTITY_NAME, Alpha-Numeric, X(220)

ACCREDITATION_STATUS, Boolean, X(1)

ACCREDITATION_MARKET_TYPE, Alpha-Numeric, X(20)

ACCREDITATION_PRODUCT, Alpha-Numeric, X(5)

ACCREDITATION_SUB_ID, Alpha-Numeric, X(50)

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date,

3

Run the query to verify the number of records in

Plan_Accreditation table equals the records

obtained from Data Source:

Select Count (*) from PLAN_ACCREDITATION_DTL

The function must return the number of records in

PLAN_ACCREDITATION_DTL table

4

Run the query to verify that primary key,

"ACCREDITATION_ID" has unique values:

Select ACCREDITATION_ID, Count

(ACCREDITATION_ID)

From PLAN_ACCREDITATION_DTL

Group By ACCREDITATION_ID

Having Count (ACCREDITATION_ID) > 1

The query should not return any records

5

Run the query to verify the relationship between

PLAN_ACCREDITATION_DTL and PLAN_DTL tables:

Select PLAN_DTL.PLAN_MARKETING_NAME,

Accreditation.ACCREDITATION_ID,

Accreditation.ACCREDITATION_ENTITY_NAME,

From PLAN_ACCREDITATION_DTL AS Accreditation

INNER JOIN PLAN_DTL

ON PLAN_ACCREDITATION_DTL.PLAN_ID =

Plan.PLAN_ID

ORDER BY PLAN_MARKETING_NAME

The function must return all the Plans with their respective

accreditation

The PLAN_PREMIUM_DTL Table must

be present in the database

PLAN_PREMIUM_DTL Table with valid data

elements and records

PM_R1_SP3_US174_TC005_Verify that

the PLAN_PREMIUM_DTL table exists in

the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PLAN_PREMIUM_DTL table:

DESC PLAN_PREMIUM_DTL

All the column names with their data types and field size from the

PLAN_PREMIUM_DTL table are displayed:

Plan_ID, Alpha-Numeric, X(50)

Plan_Year, Numeric, 9(4)

PLAN_SERVICE_AREA, Alpha-Numeric, X(3)

PLAN_PREM_TYPE_OF_SUBSCRIBER, Alpha-Numeric, X(3)

PLAN_PREM_REGION_IDENTIFIER, Long,

PLAN_PREMIUM_RATES, Float, 9(12,2)

PLAN_PREMIUM_EFF_DATE, Date,

PLAN_PREMIUM_EXP_DATE, Date,

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date.

3

Run the query to verify the number of records in

Plan_Premium_Data table equals the records

obtained from Data Source:

Select Count (*) from PLAN_PREMIUM_DTL

The function must return the number of records in

PLAN_PREMIUM_DTL table

4

Run the query to verify that unique key, "Rate_Id"

has unique values:

Select Rate_Id, Count (Rate_Id)

From PLAN_PREMIUM_DTL

Group By Rate_Id

Having Count (Rate_Id) > 1

The query should not return any records

5

Run the query to verify the relationship between

PLAN_PREMIUM_DTL and PLAN_DTL tables:

Select PLAN_DTL.PLAN_ID,

PLAN_DTL.PLAN_MARKETING_NAME,

Premium.PLAN_PREMIUM_RATES

From PLAN_PREMIUM_DTL AS Premium

INNER JOIN Plan

ON Premium.PLAN_ID = Plan.PLAN_ID

ORDER BY PLAN_ID

The function must return the Plans with different premium rates

attached to them

The FORMULARY_DTL Table must be

present in the database

FORMULARY_DTL Table with valid data

elements and records

PM_R1_SP3_US174_TC006_Verify that

the FORMULARY_DTL table exists in the

database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of FORMULARY_DTL table:

DESC FORMULARY_DTL

All the column names with their data types and field size from the

FORMULARY_DTL table are displayed:

Plan_ID, Alpha-Numeric, X(50)

Plan_Year, Numeric, 9(4)

FORMULARY_ID, Alpha-Numeric, X(50)

FORMULARY_VERSION, Alpha-Numeric, X(3)

FORMULARY_NAME, Alpha-Numeric, X(220)

FORMULARY_MODEL, Alpha-Numeric, X(2)

FORMULARY_URL, Alpha-Numeric, X(100)

FORMULARY_EFF_DT, Date,

FORMULARY_PROVIDER_URL, Alpha-Numeric, X(100)

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date

3

Run the query to verify the number of records in

FORMULARY_DTL table equals the records

obtained from Data Source:

Select Count (*) from FORMULARY_DTL

The function must return the number of records in

FORMULARY_DTL table

4

Run the query to verify that unique key,

"FORMULARY_ID" has unique values:

Select FORMULARY_ID, Count (FORMULARY_ID)

From FORMULARY_DTL

Group By FORMULARY_ID

Having Count (FORMULARY_ID) > 1

The query should not return any records

5

Run the query to verify the relationship between

FORMULARY_DTL and PLAN_DTL tables:

Select PLAN_DTL.Plan_Id,

PLAN_DTL.PLAN_MARKETING_NAME,

FORMULARY_DTL.FORMULARY_ID,

FORMULARY_DTL.FORMULARY_NAME,

From FORMULARY_DTL

INNER JOIN PLAN_DTL

ON FORMULARY_DTL.PLAN_ID =

PLAN_DTL.PLAN_ID

ORDER BY PLAN_ID

The function must return the Plans with their corresponding

Formulary details

The PLAN_BENEFIT_SERVICES_REF

Table must be present in the database

PLAN_BENEFIT_SERVICES_REF Table with

valid data elements and records

PM_R1_SP3_US174_TC007_Verify that

the PLAN_BENEFIT_SERVICES_REF table

exists in the database
1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PLAN_BENEFIT_SERVICES_REF table:

DESC PLAN_BENEFIT_SERVICES_REF

All the column names with their data types and field size from the

Benefit_Services table are displayed:

BENEFIT_SERVICE_ID, Alpha-Numeric, X(5), FALSE, Y

BENEFIT_SERVICE_NAME, Alpha-Numeric, X(220), FALSE, Y

BENEFIT_SERVICE_DESC, Alpha-Numeric, X(2000), FALSE, Y

BENEFIT_CATEGORY_NAME, Alpha-Numeric, X(500), FALSE, Y

INSERT_BY,

INSERT_DATE, Date

UPDATE_BY,

UPDATE_DATE,

3

Run the query to verify the number of records in

PLAN_BENEFIT_SERVICES_REF table equals the

records obtained from Data Source:

Select Count (*) from

PLAN_BENEFIT_SERVICES_REF

The function must return the number of records in

PLAN_BENEFIT_SERVICES_REF table

4

Run the query to verify that unique key,

"BENEFIT_SERVICE_ID" has unique values:

Select BENEFIT_SERVICE_ID, Count

(BENEFIT_SERVICE_ID)

From PLAN_BENEFIT_SERVICES_REF

Group By BENEFIT_SERVICE_ID

Having Count (BENEFIT_SERVICE_ID) > 1

The query should not return any records

PLAN_BENEFIT_SERVICES_COST_SHARI

NG_DTL Table must be present in the

database

PLAN_BENEFIT_SERVICES_COST_SHARING_

DTL Table with valid data elements and

records

PM_R1_SP3_US174_TC008_Verify that

the

PLAN_BENEFIT_SERVICES_COST_SHARIN

G_DTL table exists in the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL

table:

DESC

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL

All the column names with their data types and field size from the

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL table are displayed:

PLAN_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Numeric, 9(4)

BENEFIT_SERVICE_ID, Alpha-Numeric, X(5)

BENEFIT_COVERED, Boolean, X(1)

BENEFIT_TIER_INDICATOR, Boolean, X(1)

BENEIFT_NUMBER_OF_TIERS, Numeric, 9(2)

BENEFIT_TIER_NAME, Alpha-Numeric, X(50)

BENEFIT_COINSURANCE_INNETWORK, Float, 9(12,2)

BENEFIT_COINSURANCE_OUTNETWORK, Float, 9(12,2)

BENEFIT_COPAYMENT_ININETWORK, Float, 9(12,2)

BENEFIT_COPAYMENT_OUTNETWORK, Float, 9(12,2)

BEN_OUTOFPKT_LIMIT_INNETWORK, Float, 9(12,2)

OUTOFPKT_LIMIT_OUTNETWORK, Float, 9(12,2)

BEN_COINS_INNTK_1STINT_CSTSHR, Float, 9(12,2)

COINS_OUTNTWK_1STINT_CSTSHR, Float, 9(12,2)

COPYMT_INNTWK_1STINT_CSTSHR, Float, 9(12,2)

COPYMT_OUTNTWK_1STINT_CSTSHR, Float, 9(12,2)

BEN_STARTDATE_1STINT_CSTSHR, Date,

BEN_ENDDATE_1STINT_CSTSHR, Date,

COINS_INNTWK_2NDINT_CSTSHR, Float, 9(12,2)

COINS_OUTNTWK_2NDINT_CSTSHR, Float, 9(12,2)

COPYMT_INNTWK_2NDINT_CSTSHR, Float, 9(12,2)

COPYMT_OUTNTWK_2NDINT_CSTSHR, Float, 9(12,2)

BEN_STARTDATE_2NDINT_CSTSHR, Date,

BEN_ENDDATE_2NDINT_CSTSHR, Date,

COINS_INNTWK_3RDINT_CSTSHR, Float, 9(12,2)

3

Run the query to verify the number of records in

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL

table equals the records obtained from Data

Source:

Select Count (*) from

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL

The function must return the number of records in

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL table

4

Run the query to verify the relationship between

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL

and PLAN_DTL tables:

Select PLAN_DTL.PLAN_ID,

PLAN_DTL.PLAN_MARKETING_NAME,

Cost_Sharing. BENEFIT_SERVICE_ID,

Cost_Sharing.Benefit_Covered

From

PLAN_BENEFIT_SERVICES_COST_SHARING_DTL AS

Cost_Sharing

INNER JOIN PLAN_DTL

ON Cost_Sharing.PLAN_ID = PLAN_DTL.PLAN_ID

ORDER BY PLAN_ID

The function must return the Plans and benefits covered within each

plan

The SBC_SCENARIO_RESULTS_DTL

Table must be present in the database

SBC_SCENARIO_RESULTS_DTL Table with

valid data elements and records

PM_R1_SP3_US174_TC009_Verify that

the SBC_SCENARIO_RESULTS_DTL table

exists in the database
1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of SBC_SCENARIO_RESULTS_DTL table:

DESC SBC_SCENARIO_RESULTS_DTL

All the column names with their data types and field size from the

SBC_SCENARIO_RESULTS_DTL table are displayed:

PLAN_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Numeric, 9(4)

SBC_HAVING_BABY_FINAL_PAYMENT, Float, 9(12,2)

SBC_HAVING_BABY_DEDUCTIBLE, Float, 9(12,2)

SBC_HAVING_BABY_COPAYMENT, Float, 9(12,2)

SBC_HAVING_BABY_COINSURANCE, Float, 9(12,2)

SBC_HAV_BABY_CSTMR_TOTAL_COST, Float, 9(12,2)

SBC_HAVING_BABY_LIMITS, Float, 9(12,2)

SBC_TREAT_BRST_CANCER_FNL_PYMT, Float, 9(12,2)

SBC_TREAT_BREAST_CANCER_DED, Float, 9(12,2)

SBC_TREAT_BREAST_CANCER_COPYMT, Float, 9(12,2)

SBC_TREAT_BRST_CANCER_COINS, Float, 9(12,2)

SBC_TRET_BRSTCNCR_CST_TOT_COST, Float, 9(12,2)

SBC_TREAT_BREAST_CANCER_LIMITS, Float, 9(12,2)

SBC_MANAGING_DIABETES_FNL_PYMT, Float, 9(12,2)

SBC_MANAGING_DIABETES_DED, Float, 9(12,2)

SBC_MANAGING_DIABETES_COPYMT, Float, 9(12,2)

SBC_MANAGING_DIABETES_COINS, Float, 9(12,2)

SBC_MGN_DIABETES_CST_TOT_COST, Float, 9(12,2)

SBC_MANAGING_DIABETES_LIMITS, Float, 9(12,2)

SBC_OTHER_FINAL_PAYMENT, Float, 9(12,2)

SBC_OTHER_DEDUCTIBLE, Float, 9(12,2)

SBC_OTHER_COPAYMENT, Float, 9(12,2)

SBC_OTHER_COINSURANCE, Float, 9(12,2)

SBC_OTHER_CUSTOMER_TOTAL_COST, Float, 9(12,2)

SBC_OTHER_LIMITS, Float, 9(12,2)

3

Run the query to verify the number of records in

SBC_SCENARIO_RESULTS_DTL table equals the

records obtained from Data Source:

Select Count (*) from

SBC_SCENARIO_RESULTS_DTL Table

The function must return the number of records in

SBC_SCENARIO_RESULTS_DTL table

The SERVICE_AREA_REF table must be

present in the database

SERVICE_AREA_REF Table with valid data

elements and records

PM_R1_SP3_US174_TC010_Verify that

the SERVICE_AREA_REF table exists in

the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of SERVICE_AREA_REF table:

DESC SERVICE_AREA_REF

All the column names with their data types and field size from the

SERVICE_AREA_REF table are displayed:

PLAN_SERVICE_AREA, Alpha-Numeric, X(3)

PLAN_SERVICE_AREA_DESC, Alpha-Numeric, X(50)

STATE_CD, Alpha-Numeric, X(2)

3

Run the query to verify the number of records in

SERVICE_AREA_REF table equals the records

obtained from Data Source:

Select Count (*) from SERVICE_AREA_REF

The function must return the number of records in

SERVICE_AREA_REF table

4

Run the query to verify that primary key,

"PLAN_SERVICE_AREA" has unique values:

Select PLAN_SERVICE_AREA, Count

(PLAN_SERVICE_AREA)

From SERVICE_AREA_REF

Group By PLAN_SERVICE_AREA

Having Count (PLAN_SERVICE_AREA) > 1

The query should not return any records

5

Run the query to verify the relationship between

SERVICE_AREA_REF and ZIP_SERVICE_AREA_REF

tables:

Select Zip.ZIP_CODE,

Service.PLAN_SERVICE_AREA,

Service.PLAN_SERVICE_AREA_DESC

From SERVICE_AREA_REF AS Service

INNER JOIN ZIP_SERVICE_AREA_REF AS Zip

ON Service.PLAN_SERVICE_AREA =

Zip.Service_Area_Code

ORDER BY Zip_Code

The function must return zip codes with associated service areas

6

Run the query to verify the relationship between

SERVICE_AREA_REF and Plan_Service_Area tables:

Select Service.PLAN_SERVICE_AREA,

Service.Service_County_Name,

Plan_Service_Area.Plan_Id

From SERVICE_AREA_REF AS Service

INNER JOIN Plan_Service_Area

ON Service.Service_Area_Code =

Plan_Service_Area.Service_Area_Code

ORDER BY Plan_Id

The function must return plans allosicated with different service

areas

The Zip_Service_Area Table must be

present in the database

ZIP_SERVICE_AREA_REF Table with valid

data elements and records

PM_R1_SP3_US174_TC011_Verify that

the ZIP_SERVICE_AREA_REF table exists

in the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of ZIP_SERVICE_AREA_REF table:

DESC ZIP_SERVICE_AREA_REF

All the column names with their data types and field size from the

ZIP_SERVICE_AREA_REF table are displayed:

ZIP_CODE, Numeric, X(5)

PLAN_SERVICE_AREA, Alpha-Numeric, X(3)

3

Run the query to verify the number of records in

ZIP_SERVICE_AREA_REF table equals the records

obtained from Data Source:

Select Count (*) from ZIP_SERVICE_AREA_REF

The function must return the number of records in

ZIP_SERVICE_AREA_REF table

The PM_Master_Data Table must be

present in the database

PM_MASTER_DATA with valid data

elements and records

PM_R1_SP3_US174_TC012_Verify that

the PM_MASTER_DATA table exists in

the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PM_MASTER_DATA table:

DESC PM_MASTER_DATA

All the column names with their data types and field size from the

PM_Master_Data table are displayed:

MASTER_DATA_CODE, Alpha-Numeric, X(3)

MASTER_DATA_VALUE, Alpha-Numeric, X(250)

MASTER_DATA_DESC, Alpha-Numeric, X(250)

MASTER_DATA_TYPE, Alpha-Numeric, X(3)

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date

3

Run the query to verify that primary key,

"MASTER_DATA_CODE" has unique values:

Select MASTER_DATA_CODE, Count

(MASTER_DATA_CODE)

From MASTER_DATA_CODE

Group By MASTER_DATA_CODE

Having Count (MASTER_DATA_CODE) > 1

The query should not return any records

4

Run the query to verify that primary key,

MASTER_DATA_VALUE has unique values:

Select MASTER_DATA_VALUE, Count

(MASTER_DATA_VALUE)

From MASTER_DATA_VALUE

Group By MASTER_DATA_VALUE

Having Count (MASTER_DATA_VALUE) > 1

The query should not return any records

PROVIDER_NETWORK_PHYSICIAN_DTL

Table must be present in the database

PROVIDER_NETWORK_PHYSICIAN_DTL

Table with valid data elements and records

PM_R1_SP3_US174_TC013_Verify that

the

PROVIDER_NETWORK_PHYSICIAN_DTL

table exists in the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PROVIDER_NETWORK_PHYSICIAN_DTL

table:

DESC PROVIDER_NETWORK_PHYSICIAN_DTL

All the column names with their data types and field size from the

PROVIDER_NETWORK_PHYSICIAN_DTL table are displayed:

Plan_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Numeric, 9(4)

LAST_NAME, Alpha-Numeric, X(25)

FIRST_NAME, Alpha-Numeric, X(15)

NATIONAL_PROVIDER_IDENTIFIER, Alpha-Numeric, X(10)

LICENSE_NUMBER, Alpha-Numeric, X(8)

SITE_NAME, Alpha-Numeric, X(50)

ROOM_OR_SUITE, Alpha-Numeric, X(20)

STREET_ADDRESS, Alpha-Numeric, X(49)

TOWN_CITY, Alpha-Numeric, X(30)

STATE, Alpha-Numeric, X(2)

SERVICE_AREA_CODE, Alpha-Numeric, X(3)

ZIP_CODE, Alpha-Numeric, X(5)

ZIP_EXTENSION, Alpha-Numeric, X(4)

WHEEL_CHAIR_ACCESSIBILITY, Alpha-Numeric, X(1)

PRIMARY_DESIGNATION, Alpha-Numeric, X(1)

PRIMARY_SPECIALITY, Alpha-Numeric, X(3)

SECONDARY_SPECIALITY, Alpha-Numeric, X(3)

BOARDSTATUS_PRIMARY_SPECIALITY, Alpha-Numeric, X(1)

BOARDSTATUS_SECNDRY_SPECIALITY, Alpha-Numeric, X(1)

GENDER, Alpha-Numeric, X(1)

MEDICAID_PANEL_STATUS, Alpha-Numeric, X(1)

MEDICARE_PANEL_STATUS, Alpha-Numeric, X(1)

CHP_PANEL_STATUS, Alpha-Numeric, X(1)

FHP_PANEL_STATUS, Alpha-Numeric, X(1)

BHP_PANEL_STATUS, Alpha-Numeric, X(1)

3

Run the query to verify the number of records in

PROVIDER_NETWORK_PHYSICIAN_DTL table

equals the records obtained from Data Source:

Select Count (*) from

PROVIDER_NETWORK_PHYSICIAN_DTL

The function must return the number of records in

PROVIDER_NETWORK_PHYSICIAN_DTL

The

PROVIDER_NETWORK_ANCILLARY_DTL

Table must be present in the database

PROVIDER_NETWORK_ANCILLARY_DTL

Table with valid data elements and records

PM_R1_SP3_US174_TC014_Verify that

the

PROVIDER_NETWORK_ANCILLARY_DTL

table exists in the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PROVIDER_NETWORK_ANCILLARY_DTL

table:

DESC PROVIDER_NETWORK_ANCILLARY_DTL

All the column names with their data types and field size from the

PROVIDER_NETWORK_ANCILLARY_DTL table are displayed:

PLAN_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Numeric, 9(4)

SITE_NAME, Alpha-Numeric, X(50)

Room_Or_Suite, Alpha-Numeric, X(20)

ROOM_OR_SUITE, Alpha-Numeric, X(50)

TOWN_CITY, Alpha-Numeric, X(30)

STATE, Alpha-Numeric, X(2)

SERVICE_AREA_CODE, Alpha-Numeric, X(3)

ZIP_CODE, Alpha-Numeric, X(5)

ZIP_EXTENSION, Alpha-Numeric, X(4)

DESIGNATED_SERVICE_CODE, Alpha-Numeric, X(3)

NATIONAL_PROVIDER_IDENTIFIER, Alpha-Numeric, X(10)

LICENSE_NUMBER, Alpha-Numeric, X(8)

PERMANENT_FACILITY_IDENTIFIER, Alpha-Numeric, X(4)

AREA_CODE, Alpha-Numeric, X(3)

PHONE_NUMBER, Alpha-Numeric, X(7)

SERVICE_1, Alpha-Numeric, X(3)

SERVICE_2, Alpha-Numeric, X(3)

SERVICE_3, Alpha-Numeric, X(3)

SERVICE_4, Alpha-Numeric, X(3)

SERVICE_5, Alpha-Numeric, X(3)

SERVICE_6,Alpha-Numeric, X(3)

SERVICE_7, Alpha-Numeric, X(3)

SERVICE_8, Alpha-Numeric, X(3)

SERVICE_9, Alpha-Numeric, X(3)

SERVICE_10, Alpha-Numeric, X(3)

3

Run the query to verify the number of records in

PROVIDER_NETWORK_ANCILLARY_DTL table

equals the records obtained from Data Source:

Select Count (*)

fromPROVIDER_NETWORK_ANCILLARY_DTL

The function must return the number of records in

PROVIDER_NETWORK_ANCILLARY_DTL table

The PLAN_QUALITY_DTL Table must be

present in the database

PLAN_QUALITY_DTL Table with valid data

elements and records

PM_R1_SP3_US174_TC015_Verify that

the PLAN_QUALITY_DTL table exists in

the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of PLAN_QUALITY_DTL table:

DESC PLAN_QUALITY_DTL

All the column names with their data types and field size from the

Plan_Quality_Data table are displayed:

PLAN_ID, Alpha-Numeric, X(50)

PLAN_YEAR, Alpha-Numeric, 9(4)

RATING, Alpha-Numeric, X(2)

DOMAIN, Alpha-Numeric, X(25)

SCORE, Alpha-Numeric, X(10)

MEASURE, Alpha-Numeric, X(30)

RATE, Alpha-Numeric, X(4)

LEVEL_SIGNIFICANCE, Alpha-Numeric, X(2)

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date,

SOURCE_SENT_TIMESTAMP, Timestamp.

3

Run the query to verify the number of records in

PLAN_QUALITY_DTL table equals the records

obtained from Data Source:

Select Count (*) from PLAN_QUALITY_DTL

The function must return the number of records in

PLAN_QUALITY_DTL table

The CHIP_PREMIUM_DTL Table must

be present in the database

CHIP_PREMIUM_DTL Table with valid data

elements and records

PM_R1_SP3_US174_TC016_Verify that

the CHIP_PREMIUM_DTL table exists in

the database

1

Login the given database with valid User ID and

Password

User should be able to login the database

2

Run the query to verify the data types and field

size of CHIP_PREMIUM_DTL table:

DESC CHIP_PREMIUM_DTL

All the column names with their data types and field size from the

CHIP_PREMIUM_DTL table are displayed:

CHILD_ROW_ID, Numeric, 9(2)

INCOME_PERCENT_START, Numeric, 9(3)

INCOME_PERCENT_END, Numeric, 9(3)

RATE_PER_CHILD, Float, 9(12,2)

MAXIMUM_FAMILY_RATE, Float, 9(12,2)

RATE_BAND_EFFECTIVE_DATE, Date,

RATE_BAND_EXPIRATION_DATE, Date,

STATUS, Boolean, X(1)

INSERT_BY, Alpha-Numeric, X(20)

INSERT_DATE, Date,

UPDATE_BY, Alpha-Numeric, X(20)

UPDATE_DATE, Date,

SOURCE_SENT_TIMESTAMP, Timestamp.

3

Run the query to verify the number of records in

CHIP_PREMIUM_DTL table equals the records

obtained from Data Source:

Select Count (*) from CHIP_PREMIUM_DTL

The function must return the number of records in

CHIP_Premuim_Data table

Test Case/Step Result Manual or Automated

Passed Manual

Failed Automated

Not Executed Both

New

Open

Fixed

Ready to test

Closed

CommentsWritten By

Test Cases & Defects

User Story Name Total No of test cases written Comments

169: As an Exchange Administrator, I want

to ensure that conceptual and logical

subject area data modeling for Plan

Management data elements is performed.

15

386: As the Exchange Administrator, I

want to ensure thatExchange Operators

Screens Prototypes are Developed.
34

387: As the Exchange Administrator, I

want to ensure that the prototype for

interface screens for Insurers are

developed.

36

v12 v13 v14 v15 Defect ID Defect Status Written ByUser Story Name Test Pre Conditions Test Case Number & Name Step number Test Step name Expected Results

Test Case/Step Result

Test Scenario

Test Case/Step Result Manual or Automated

Passed Manual

Failed Automated

Not Executed Both

Defect Status

New

Open

Fixed

Ready to test

Closed

Comments

Test Cases & Defects

User Story Name Total No of test cases written Comments

v18 v19 v20 v21 Defect ID Defect Status Written ByUser Story Name Test Pre Conditions Test Case Number & Name Step number Test Step name Expected Results

Test Case/Step Result

Test Scenario

Test Case/Step Result Manual or Automated

Passed Manual

Failed Automated

Not Executed Both

Defect Status

New

Open

Fixed

Ready to test

Closed

Comments

Test Cases & Defects

User Story Name Total No of test cases written Comments

v5 v6 Defect ID Defect Status Written ByUser Story Name Test Pre Conditions Test Case Number & Name Step number Test Step name Expected Results

Test Case/ Step Result

Test Scenario

Test Case/Step Result Manual or Automated

Passed Manual

Failed Automated

Not Executed Both

Defect Status

New

Open

Fixed

Ready to test

Closed

Comments

