
New York Health Benefit Exchange

Detailed Design Review Summary for
9.4.5 Configuration Management Plan

October 9 & 10, 2012

Item Number Topic

9.4.5 Configuration Management Plan

New York Health Exchange Project

CSC

9.4.5 Configuration Management (CM) Plan

Document Number: 528500-20120813000

Contract Number: FAU #1106211137

Release Version 2.0

Date Submitted: September 5, 2012

New York State

Department of Health

NY-HX CM Plan Page i

September 5, 2012

VERSION HISTORY

Version

Number

Implemented

By

Revision

Date

Approved

By

Approval

Date

Description of

Change

1.0 CSC / L. Davis,

 R. Davis

08/17/2012 CSC / S. Garner, C.

Adams

 Initial Publication

1.1 CSC / L. Davis,

 R. Davis

08/30/2012 CSC / S. Garner, C.

Adams

 Updates based on Cognosante

review feedback

2.0 CSC / L. Davis,

 R. Davis

 Carl Schell 09/05/12 DOH Approval Received

Document Distribution

Any delivered versions of the Configuration Management Plan document will be stored in the
deliverable tracker section of the NY-HX SharePoint repository, and will be available to all via
this medium.

http://www.csc.com/

NY-HX CM Plan Page ii

September 5, 2012

Table of Contents
1 INTRODUCTION .. 1
1.1 Purpose .. 1
1.2 Goals ... 1
1.3 Plan Organization/Maintenance .. 1
1.4 Referenced Documents ... 2
1.5 Configuration Management Tools and Processes ... 3

1.5.1 JAZZ Collaboration Environment... 3
1.5.2 Requirement Elicitation and Prioritization.. 3
1.5.3 Rational Requirement Composer (RRC) .. 4
1.5.4 Rational Quality Manager (RQM) .. 4
1.5.5 Rational Team Concert (RTC) .. 4
1.5.6 Rational Build Forge (RBF) .. 5
1.5.7 Maven ... 5
1.5.8 Nexus .. 5
1.5.9 NY-HX Sharepoint ... 5

2 PROJECT ORGANIZATION AND RESPONSIBILITIES ... 6
2.1 Project Responsibilities ... 6

2.1.1 Program/Project Management ... 6
2.1.2 Internal and External Stakeholders ... 6
2.1.3 Roles & Responsibilities ... 6
2.1.4 Configuration Management Personnel .. 7
2.1.5 Training ... 7
2.1.6 Development ... 8
2.1.7 Testing ... 8
2.1.8 Quality Assurance ... 8
2.1.9 NY-HX Change Control Board ... 8
2.1.10 New York State Department of Health ... 8
2.1.11 RDC Change Control Review Board .. 8

3 CONFIGURATION IDENTIFICATION ... 9
3.1 Identifying Configuration Items .. 9

3.1.1 Naming Standard... 9
3.1.2 Baselines ... 9
3.1.3 Storage & Retention .. 9
3.1.4 Configuration Control ... 10
3.1.5 Configuration Promotion .. 10
3.1.6 Tracking & Controlling Changes to CI Baseline .. 10
3.1.7 Application Software Environments ... 10

4 CONFIGURATION CHANGE CONTROL .. 12
4.1 Configuration Change Control .. 12
4.2 Change Management... 16
5 CONFIGURATION STATUS ACCOUNTING .. 17
5.1 CSA Process and Records ... 17
6 DATA MANAGEMENT .. 18
7 CONFIGURATION VERIFICATION AND AUDITS.. 19
7.1 Configuration Integrity ... 19
7.2 Configuration Auditing ... 19
Appendix A GLOSSARY & ACRONYMS .. 20

http://www.csc.com/

NY-HX CM Plan Page iii

September 5, 2012

http://www.csc.com/

NY-HX CM Plan Page iv

September 5, 2012

 LIST OF FIGURES

Figure 1: JAZZ Collaboration Environment ... 3
Figure 2: NY-HX Exchange SDLC Environments ... 11
Figure 3: NY-HX Exchange SDLC Environments Function .. 11
Figure 4: RTC Stream Flow .. 12
Figure 5: CM Request Workflow.. 16

LIST OF TABLES

Table 1: RACI Chart for CM .. 7
Table 2: CM Naming Conventions ... 9
Table 3: CM Processes for Developer Collaboration ... 13
Table 4: CM Processes for Team Collaboration ... 14
Table 5: CM Processes for Deploy to DEV_TEST Environment ... 15
Table 6: CM Processes for Critical Fixes to DEV_TEST Environment ... 15

http://www.csc.com/

NY-HX CM Plan Page 1 of 20
August 30, 2012

1 INTRODUCTION

This Configuration Management (CM) Plan (CMP) defines the CM program to which the New York

State Health Benefit Exchange (NY-HX) Program adheres. The plan summarizes the roles and

responsibilities of CM as it relates to the various functional groups and Sprint Teams working on this

project. This document will be baselined and reside in the program Process Asset Library on the NY-HX

SharePoint located at https://workspace.nyhx.emedny.org/pal/.

1.1 Purpose

The overall objective of a Configuration Management (CM) Plan is to document and inform project

stakeholders about CM with the project, what CM tools will be used, and how they will be applied by

the project to promote success. The NY-HX CM Plan defines the project’s structure and methods for:

 Identifying, defining, and baselining configuration items (CI)

 Controlling modifications and releases of CIs

 Reporting and recording status of CIs and any requested modifications

 Ensuring completeness, consistency, and correctness of CIs

 Controlling storage, handling, and delivery of the CIs

1.2 Goals

The major goals for CM implementation and management are as follows:

 To support performance and project activities outlined in the NY-HX Project Management Plan

 To optimize continued enhancement of CM and data management processes through project

change and improvement activities

This plan covers the CM concepts used to achieve and maintain configured baselines through the

various stages of the Design, Development, and Installation (DDI) process for the NY-HX. The

Software Development Life Cycle (SDLC) for the NY-HX follows an Agile process. Agile practices

include multiple builds that require packaging and deployment of code in support of those builds. This

plan describes the complex interplay of hardware, code, and data configurations managed from initial

design and development through to final system deployment. This includes CM interaction with the

Software Development staff, technical management, testing teams, and quality assurance (QA). The

plan specifies the CM tools and system utilities used to establish the controlled baselines. This plan

applies to all CM functions throughout the project life cycle.

1.3 Plan Organization/Maintenance

This document is organized into the following sections:

 Section 1 – Describes the plans purpose, plan organization, cites reference documents, and

describes Configuration Management Tools.

 Section 2 – Identifies the project organization for the NY-HX, describes the operational units, and

the CM responsibilities shared by each.

 Section 3 – Describes the generic method for identifying and controlling configuration items (CIs)

and baselines.

 Section 4 – Identifies configuration change control, references policies, generic procedures, and

standards that will be developed to control established baselines and to process proposed and

approved changes to established baselines (i.e., configuration controls).

http://www.csc.com/

NY-HX CM Plan Page 2 of 20
August 30, 2012

 Section 5 – Describes the Configuration Status Accounting (CSA) records and reports used by the

project.

 Section 6 – Describes data management identification, management, and maintenance.

 Section 7 – Describes methods for evaluating the effectiveness of the CM program (e.g., audits).

 Section 8 – References Master Project Management Deliverables Glossary & Acronym List

 Section 9 – References Master Project Management Deliverables Glossary & Acronym List.

The NY-HX CM team is responsible for the maintenance of this document and ensures that the

document is reviewed and updated at least annually.

The CM manager oversees control and maintenance of this CMP. The CM manager will review and

update this document at least annually throughout the life of the project. More frequent updates may

be made, as needed, to accurately reflect changes on the project. Any NY-HX staff member may

request a change to this CM Plan. All changes to the CM Plan should be vetted and approved through

the NY-HX CSC Change Control Board (CCB).

The policies and procedures described in this document are systematically being implemented, in

accordance with the Agile iterative and incremental approach, and based on alignment with the scrum

team activities. Projects, teams, roles and permission have already been implemented in the Rational

tools, and work items such as Epics, Stories and Tasks, are currently being entered by each scrum

team. Developers are starting to place their code under source control, and a proof of concept end-to-

end build and deploy has been run successfully. The CM process will continue to be updated and

enhanced until it is fully implemented as described in this document.

1.4 Referenced Documents

Reference materials to support the CM efforts on this program are found in the following

documentation, as shown in Table 1.

Document Name Location Issuance

Date

Funding Availability Solicitation

(FAS) for the New York State Health

Benefit Exchange, Tab 6.15 Use of

IBM Rational Suite

http://www.health.ny.gov/funding/rfp/1106211137/

2011

NY-HX Change Control Management

Plan

https://workspace.nyhx.emedny.org/pal/For

ms/group.aspx

Future

Deliverable

NY-HX Scope Management Plan https://workspace.nyhx.emedny.org/pal/For

ms/group.aspx

Future

Deliverable

NY-HX Project Management Plan https://workspace.nyhx.emedny.org/pal/For

ms/group.aspx

Future

Deliverable

NY-HX Data Management Plan

https://workspace.nyhx.emedny.org/pal/For

ms/group.aspx

Future

Deliverable

Table 1: Referenced Documents

http://www.csc.com/
http://www.health.ny.gov/funding/rfp/1106211137/
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx
https://workspace.nyhx.emedny.org/pal/Forms/group.aspx

NY-HX CM Plan Page 3 of 20
August 30, 2012

1.5 Configuration Management Tools and Processes

1.5.1 JAZZ Collaboration Environment

Figure 1: JAZZ Collaboration Environment

The Jazz Platform depicted in the above figure, provides a collaborative environment whereby the

Rational Tools (RTC, RRC and RQM) are linked using a LifeCycle Project. This linkage allows

for traceability of test plans and test cases in RQM to the requirements in RRC and the work

items (epics, stories and tasks) in RTC. Likewise, the work items in RTC may be traced back to

the requirements in RRC and the test cases in RQM. In addition to traceability, the Jazz Platform

fosters communication between all users of all tools in the Rational Suite.

1.5.2 Requirement Elicitation and Prioritization

The core requirements for the NY-HX project, as outlined in the FAS and the contract between

CSC and DOH, will be captured and tracked using products from the Rational tools suite. Each

high level requirement will be documented in the Rational Requirement Composer (RRC), and

further defined by creating a set of "user stories," which will be tracked in Rational Team Concert

(RTC). Defining requirements via user stories, is an Agile approach to eliciting necessary system

functions and features from a user perspective. The majority of user stories will be created by the

individual scrum teams, in conjunction with their Product Owners and SME's (subject matter

experts represented by NY DOH) during the initial Sprint 0 planning phase of the individual

tracks.

User stories comprise the product inventory for each track of work, and detail what each scrum

team will be responsible for accomplishing during the lifecycle of the NY-HX project.

http://www.csc.com/

NY-HX CM Plan Page 4 of 20
August 30, 2012

Development of the user stories will occur in 2-week "sprint" cycles that will include a sprint

review at the end of the 2 weeks, in order to present the Product Owner with what was completed.

After the sprint review, the Product Owner and/or team may identify additional user stories that

may be necessary for the product inventory. The process for managing changes to the product

inventory is described in detail in the Change Control Management Plan (CCMP).

Throughout the sprint cycles, the Product Owners will be responsible for grooming the product

inventory (prioritizing, adding or removing stories, and providing further details as needed), as

well as ensuring the teams are working on stories that are deemed high priority and high value

for the client. Each release will comprise 11 sprints, with additional sprint 0 planning sprints that

will occur prior to each release. This will allow the Product Owner and scrum teams to perform

further grooming, prioritization and analysis of the product inventory.

1.5.3 Rational Requirement Composer (RRC)

RRC helps teams organize, prioritize, track, and control changing requirements of a system or

application. It is a source of reference for all requirements details and status for all project

resources throughout the project.

As the repository for all details of each project requirement, the tool will be used for:

 Data entry of baseline requirements and approved changed requirements.

 Tracking Requirements attributes the as requirements definition evolves through the project

life cycle.

 Progressive Elaboration of high level requirements into more granular requirements.

 Tracking of requirement status throughout the project life cycle.

 Aligning requirements with the project schedule in accordance with the Agile methodology

1.5.4 Rational Quality Manager (RQM)

RQM provides a collaborative application lifecycle management environment for test planning,

construction, and execution. The tool will be used to:

 Enable quality assurance team to track all aspects of the quality assurance effort

 Create a dynamic test plan that contains all information pertaining to the quality

assurance effort, such as goals, schedules, milestones and exit criteria as well as links

to associated test cases, requirements and development work items

 Allow for manual test authoring and execution, test lab management, test execution,

reporting and defect management

1.5.5 Rational Team Concert (RTC)

RTC provides a complete collaborative development environment that facilitates work item

management, build management, integrated reporting, and process support. RTC has features

such as change tracking, process automation, planning, reporting, testing and lifecycle

traceability, which enables better insight, predictability, and control of software and systems

development, along with their associated changes.

RTC’s collaborative change management capabilities and benefits include:

http://www.csc.com/

NY-HX CM Plan Page 5 of 20
August 30, 2012

 Rich and fully customizable work item attributes and capabilities to track and coordinate

tasks and workflows for any purpose, governed by the team’s selected processes

 Agile project planning capabilities to extend the traditional notion of change management

from just work items, to include planning and tracking by linking work items to actionable

plans

 Automated dashboards and reporting for transparency and monitoring

 Requirements change management and traceability to the project team

 A collaboration hub for a distributed decentralized enterprise change management view

1.5.6 Rational Build Forge (RBF)

Configuration Management (CM) will use Rational Build Forge, an “agnostic” software that

technically can be hosted on any platform. Rational Build Forge, which is basically a script

engine or automation framework, will be used for build and release management. Closely

coupled with the requirements management tools is the ability to link quality testing to the shared

database. By directly linking testing to requirements, the CSC team will be able to achieve a high

level of customer satisfaction and greatly accelerate the build-test-debug cycle. This integrated

workflow will speed the time to resolution.

1.5.7 Maven

Java Software Build Utility which dynamically downloads Java libraries and Maven plug-ins

from one or more repositories. Maven provides built-in support for retrieving files from

repositories, and can upload artifacts to specific repositories after a successful build. Maven is

built using a plug-in-based architecture that allows it to make use of any application controllable

through standard input. Maven provides Plug-ins that allow for software dependency

management reporting, performing software builds, performing release management tasks such as

uploading java artifacts.

1.5.8 Nexus

Java Maven Artifact Repository which stores in-house developed working and finalized copies of

java archives (jars) dependencies used by java projects that utilize Maven build scripts. Provides

an interface for obtaining 3rd party java archives from publicly available maven repository

archives.

1.5.9 NY-HX Sharepoint

CM will store the audit artifacts in Microsoft SharePoint which is located in the NY-HX

workspace.

http://www.csc.com/

NY-HX CM Plan Page 6 of 20
August 30, 2012

2 PROJECT ORGANIZATION AND RESPONSIBILITIES

CM supports the functions of the software development, testing, and data center operations teams. The

Configuration Manager provides oversight for these functions, and Configuration Analysts are

responsible for implementing CM across the project. This includes managing, tracking, and controlling all

changes to project baselines through the project life-cycle phases to ensure proper configuration and

integrity at each baselined stage. Specifically, CM functions include:

 Maintaining configuration control over all appropriate NY-HX deliverables

 Maintaining controlled test environments for NY-HX testing

 Maintaining NY-HX hardware and software baselines

 Maintaining records describing the various hardware, software, and data configuration items

 Maintaining CR records and NY-HX defect reports

 Supporting QA audits of compliance with the CMP and related standards and procedures

 Auditing the hardware, software, and documentation baselines for completeness, correctness, and

consistency

 Coordinating the effort with and supporting the Architecture, Development, and Test teams for the

delivery and installation of the hardware components and software products to the Rensselaer Data

Center (RDC)

2.1 Project Responsibilities

2.1.1 Program/Project Management

The overall responsibility of program/project management is to ensure adequate staffing, budget,

facilities, and tools are made available for effective configuration management and control.

Program/project management is also responsible for reviewing CM activities through weekly and

monthly status reporting, and as necessary to identify and create processes, schedules, and

technical issue resolution.

2.1.2 Internal and External Stakeholders

Internal and external stakeholders share equal responsibility for following and implementing CM

practices and activities outlined in this document, ensuring CIs are identified and maintained, and

that coordination and cooperation between functional roles at all organizational levels are

maintained. The following section outlines specific roles and responsibilities for internal (project

personnel) and external (DOH customer and user) stakeholders.

2.1.3 Roles & Responsibilities

The CM team will report to the PMO. This ensures the independence of CM and supports the

delivery of quality products by minimizing or eliminating the introduction of uncontrolled code.

http://www.csc.com/

NY-HX CM Plan Page 7 of 20
August 30, 2012

Other roles that may work in conjunction with, or impact CM for the NY-HX project, are

identified in the table below, along with their associated responsibilities. In this model, the

Change Owner may be any member of the scrum team, including the Product Owner that

identifies a potential change.

Key:

 R = Responsible; performs the task

 A = Accountable; ultimately answerable for completion of

 task

 C = Consulted; provides information or assistance

 I = Informed; kept apprised of the activity

P
ro

d
u

ct
 O

w
n

er
 \

S
M

E

S
cr

u
m

 M
as

te
r

D
ev

el
o

p
er

T
es

te
r

C
o

n
fi

g
u

ra
ti

o
n

 M
g

m
t

A
rc

h
it

ec
tu

re

Create Work Items (Epics, Stories, Tasks) CI RA C

Prioritize Work Items C RA

Schedule Work Items I RA C

Implementing Work Items A R C

Building Work Items(Maven) I R A CI

Deploying Work Items(Build Forge) I C C RA R

Testing Work Items I C RA C

Creating Defects I C RA C

Approving Work Item Completion R A

Closing Work Items I RA R R

Table 1: RACI Chart for CM

2.1.4 Configuration Management Personnel

The NY-HX Configuration Management (CM) team consists of the Configuration Manager and

supporting Analysts. The Configuration Manager manages the definition, development,

maintenance and distribution of configuration management plans and procedures. He\She guides

the execution of configuration issues in a full hardware/software lifecycle. He\She supports

configuration management activities for various projects including production hardware support;

provides support to the software development environment. The CM Analysts are responsible for

managing the hardware and software throughout the entire project life cycle. This includes

ensuring that the integrity of all source code is maintained and that a valid audit trail exists for all

changes to hardware and source code. The team is responsible for moving only documented and

authorized source code within the testing and production environments. The Scrum team

maintains the schedule for when CM is to promote each release to each environment. They are

also responsible for providing CM and the Database Administrators (DBAs) with a list of the

changes to be promoted into and deleted from each environment. The CM team participates in the

coordination of migration activities with the DBA and Production Operations areas, and provides

resources for the restoration of elements in a disaster recovery situation.

2.1.5 Training

Initial program tools training with the Rational suite, has been provided by IBM trainers.

Additional NY-HX Rational training related to CM activities, will be the responsibility of the CM

Team. Training will be conducted on an annual basis, or as needed to provide support to users.

Training and support may include mentoring, providing training materials, Rational guides,

classes and one-on-one coaching.

http://www.csc.com/

NY-HX CM Plan Page 8 of 20
August 30, 2012

2.1.6 Development

The CM team supports the development teams in the configuration control and promotion of

software components from the development and unit test stage through the various test stages to

the operational environment. The development teams are supported by the CM team in ensuring

that changes to common software components supporting multiple functions are incorporated in

all applicable areas. The CM team also assists with CM tool issues encountered by the

development teams.

2.1.7 Testing

The CM team supports the Testing team in establishing and maintaining test environments. The

CM team also assists with the configuration of controlled elements as they are introduced into the

test arenas.

2.1.8 Quality Assurance

The QA team reviews, monitors, conducts audits and raises risks as needed, to ensure the CMP

guidelines are followed.

2.1.9 NY-HX Change Control Board

The NY-HX Change Control Board (CCB) serves as the coordinating body for all NY-HX defect

reports and relevant Technical Baseline CRs. The NY-HX CCB may be comprised of members

from CM, Architects, Developers, PMO, DOH and QA. The board will also determine the

disposition for related changes to permanent baselines (i.e., functional, allocated, development,

and product baselines).

2.1.10 New York State Department of Health

The New York State Department of Health (NY DOH) or its designee may review Status

Accounting Reports of controlled elements and CRs to ensure that proper CM procedures are

followed.

2.1.11 RDC Change Control Review Board

All hardware and software product installations at the Rensselaer Data Center (RDC) are

reviewed and approved by the RDC CCRB. The board coordinates and schedules the installations

to ensure that they meet all data center and customer requirements. In addition, all software

deliveries to the NY-HX operational environment are coordinated and scheduled with the

approval of the RDC’s CCRB.

http://www.csc.com/

NY-HX CM Plan Page 9 of 20
August 30, 2012

3 CONFIGURATION IDENTIFICATION

3.1 Identifying Configuration Items

3.1.1 Naming Standard

The development teams will use Rational Team Concert (RTC) for configuration management

and Rational Build Forge to manage the build and release process. Naming conventions are

defined for the following items:

Artifact Convention
RTC Streams Streams will use the Team's name for team streams and "Integration"

for integration stream. Ad hoc streams are prefixed with their team

name.

RTC Repository Workspaces Begin with the user's RTC username and then may contain any user

or team specific naming.

RTC Build Definition Team builds named with team name, integration build named "Int"

Snapshots/Baselines Snapshots are labeled with the following conventions:

<Team>_<Build_Type><yyyymmddmmss> where the Team is one

of {PM, EEI, EEB, FM, Int} and build type is "T" for development

team builds, "I" for integration builds, and "R" for release.

Build's generated artifacts The deployable ear file resulting from a build will be labeled

<snapshot name>.ear, the same name as the snapshot used to create

the Ear file. Ear files will also contain a bill of materials (BOM)

listing the Ear file's contents.

Table 2: CM Naming Conventions

3.1.2 Baselines

In RTC, all CIs are stored in Components, and modifications to CIs are shared through Streams.

RTC remembers configurations by creating a snapshot on a Stream. Snapshots create baselines

on all the components contained within the Stream. This process allows different Streams to be

working on different component baselines.

Each team and integration build will automatically create a snapshot in the team or integration

Stream. Build Forge will be used to deploy release builds to the Nexus repository and on to the

DEV environment as requested by the Agile development teams. Build Forge will also be used to

deploy the built artifacts to other environments (e.g., SIT, UAT). CM will mark those snapshots

when they are deployed to each of these other environments. CM will change the state of all

work (User Stories, Defects, etc.) included in the snapshot to indicate the work items are now in

DEV (or SIT, or UAT). All build & deploy history will be tracked within RTC.

3.1.3 Storage & Retention

All CIs are stored and versioned in RTC. RTC uses a DB2 database that is backed daily. The

disaster recovery plan is referred to in the Environment section 5.4.3.

http://www.csc.com/

NY-HX CM Plan Page 10 of 20
August 30, 2012

3.1.4 Configuration Control

During Sprints, the teams will add and modify CIs in the RTC Repository Workspace. Since the

Repository Workspace is located on the server, every saved change is immediately placed under

CM control and is mirrored on the redundant server.

Changes are delivered to the team's stream following the team's Agile process which may include

reviews from peers (code reviews) and/or testers (informal test analysis). Team and integration

builds run continuously creating snapshots to remember those configurations. The Integration

build at the end of each Sprint marks the release to the DEV environment.

The teams' Product Owners are responsible for maintaining the product inventory, which includes

regular review and prioritization, as well as adding and removing items (the inventory may be

comprised of a combination of user stories, epics, CR's, technical stories, and spikes). The

Product Owner ultimately accepts or rejects changes to the inventory. At the beginning of each

Sprint, a team's Product Owner works with the team to select work the team will commit to for

that Sprint.

3.1.5 Configuration Promotion

The team's Product Owner works collaboratively with the team to assesses approved changes

and/or problem reports continuously throughout the development cycles.

The cross-functional development teams, following Agile best practices, include representation

from development, test, architecture, DBA, CM, and Product Owner (client). The Agile

development teams determine when releases move to DEV, from DEV to SIT, and from SIT to

UAT.

3.1.6 Tracking & Controlling Changes to CI Baseline

All CI changes will be associated with their work item (User Story, Defect, etc.) which are

implemented and built and unit tested in the team and integration builds. The changes are tracked

by each build's snapshot. Snapshots are verified by the test team when deployed to the DEV and

other controlled environments (SIT, UAT, etc.).

To support Agile practices, Testers (and possibly Product Owners) will have the ability to review

developer's work prior to deployment to the controlled DEV environment. Team members will

strive toward a test driven development (TDD) approach, whereby developers and testers work

closely together to develop test cases prior to, or in conjunction with functional code. When

developers complete a User Story, testers may informally exercise the new functionality by

viewing the change on the developer's WAS server and provide feedback for any necessary code

modifications. The goal of this collaborative approach is to reveal issues early, and adapt

quickly; prior to deployment in the controlled environment.

3.1.7 Application Software Environments

CSC has selected the IBM Rational Suite to provide robust programmatic control of service

development. CSC will use the IBM tools to form an integrated development environment that

will manage requirements from initial concept through the entire SDLC process. Rational Team

Concert and Rational Build Forge will be utilized for Configuration Management.

http://www.csc.com/

NY-HX CM Plan Page 11 of 20
August 30, 2012

The CSC SDLC will be comprised of the environments listed in Figures 1 and 2. These

environments contain the required hardware, software, network, and database capabilities and

ensure an isolated production-ready environment.

Figure 2: NY-HX Exchange SDLC Environments

Figure 3: NY-HX Exchange SDLC Environments Function

http://www.csc.com/

NY-HX CM Plan Page 12 of 20
August 30, 2012

4 CONFIGURATION CHANGE CONTROL

4.1 Configuration Change Control

The NY-HX project currently utilizes 4 Agile development teams, one for each of the following

tracks: Plan Management (PM), Eligibility Determination and Enrollment for Individuals (EEI),

Small Business Health Options (SHOP), and Financial Management (FM). Agile teams are

cross-functional and consist of Developers, Testers, Business Analysts, Architects, Tech Writers,

CM, Scrum Masters, and Product Owners. Teams work independently, frequently sharing their

changes with teammates. In addition, each team may integrate their changes with other teams

one or more times each Sprint.

Each team will have their own collaboration area to share changes, which is called a Stream in

RTC. The figure below shows the four team streams as well as an Integration stream. Each

developer will have their private Repository Workspace that flows changes to and from the

stream (Al's workspace in the figure).

To support continuous build practices, each stream (team and integration) will have a build

Repository Workspace used by the build process to continuously build and test changes (the

Build workspaces in the figure).

The DEV_TEST environment may be a Sprint behind the current development which is in the

developers workspace in RTC. In cases where the testing team working in DEV_TEST finds a

critical defect, development may need to make changes and deploy them directly to DEV_TEST

rather than through the Integration stream. The Dev-Maint stream is always in sync with the

system version running in DEV_TEST, and provides development team members the ability to

make changes and send them directly to DEV_TEST. The Integration build sets the Dev-Maint

Stream's snapshot to the version being deployed to DEV_TEST.

Figure 4: RTC Stream Flow

http://www.csc.com/

NY-HX CM Plan Page 13 of 20
August 30, 2012

Process Tools & Techniques

1. Developer loads team's source

artifacts

RTC loads artifacts from the team's Stream to the

Developers Eclipse Workspace (aka sandbox)

2. Developer receives work item

(story, task, defect, etc.)

RTC presents users assigned work for the current Sprint

3. Developer makes appropriate

changes to source artifacts

RTC auto-checks the files into the RTC repository as

developer saves changes. RTC associates changes to the

developer's current work item.

4. Prior to delivering changes to the

team, developer ensures their

Repository Workspace in sync with

teams' Stream

RTC presents incoming changes and conflicts. Developer

must accept changes and resolves conflicts (auto/manual

merging) before delivering their changes to the team's

Stream.

5. Prior to delivering changes,

developers run team's Unit Tests

Developer runs test locally or could leverage the team build

to build/test changes in the RTC Repository Workspace

6. Prior to delivering changes, testers

may review the change to provide

initial, informal feedback

Testers can view the developer's change by connecting to

the developer's WebSphere server.

7. Developer delivers change to team's

Stream

Developer delivers change set from their Repository

Workspace to the team Stream in RTC

8. Developer transitions work item to

next state (towards Done)

New -> Implement -> DEV_Test -> SIT --> UAT -> Done

9. Team-level continuous build

includes change in the next

execution

Build Forge team builds running continuously

automatically detect changes since the last execution and

include them in the team-level build. The build uses the

team's Maven build scripts to compile, package, deploy,

and unit test the team-level code.

Table 3: CM Processes for Developer Collaboration

http://www.csc.com/

NY-HX CM Plan Page 14 of 20
August 30, 2012

The table below describes the team-to-team collaboration. All teams periodically integrate their

team-level changes to the Integration stream and pull Integration changes back to their team

streams. A developer from each team (the Integrator) will merge changes between their team and

the Integration stream. The Integration stream has a continuous build that runs automatically,

detecting any changes and automatically building and testing them using the Jazz Build Engine in

RTC along with basic smoke tests. Build status is reported in RTC.

Process Tools & Techniques

1. Integrator delivers team changes to

the Integration stream

The Integrator ensures their Repository Workspace is

current with the team's Stream and then changes the

Workspace's "flow target" to the Integration Stream. RTC

shows any incoming changes and conflicts from other

teams. The Integrator (seeing any incoming changes

indicating that another team has delivered their changes

and will collaborate with that team) merges changes,

resolves any conflicts, and delivers changes to the

Integration stream

2. Integrator delivers other team's

changes back to their team's stream

The Integrator changes their Repository Workspace (which

contains the Integration Stream changes) flow target back

to their team Stream and delivers the Integration changes to

their team. If the team Stream has new changes, the

Integrator must merge them prior to delivery.

3. Team members accept Integration

changes

After the Integration delivery to the team Stream, all team

member accept (and possibly merge if RTC indicates a

conflict) the incoming Integration changes

4. Integration-level continuous build

includes change in the next

execution

The Build Forge Integration build runs continuously

automatically detect changes since the last execution and

including them in the integration-level build. The build

uses the team's Maven build scripts as well as integration

scripts to compile, package, deploy, and test the

integration-level code.

Table 4: CM Processes for Team Collaboration

http://www.csc.com/

NY-HX CM Plan Page 15 of 20
August 30, 2012

Process Tools & Techniques

1. CM runs the integration build for

deployment into Nexus

CM starts the automated build scripts to build and deploy

to Nexus using Build Forge. The Integration build

compiles, packages, tests, and (if successful) deploys the

artifacts into the Nexus repository. If the build fails, the

developer and scrum master will be automatically notified

for resolution.

2. Deploy from Nexus to DEV_TEST Build Forge invokes the process to deploy from the Nexus

repository into the DEV_TEST environment. Build Forge

updates the Dev_Maint Stream so it is in sync with the

version in DEV_TEST. The DEV_TEST deployment

process may require manual steps for activities such as

database modifications or other environment configuration.

CM updates the state in all work items included in the

snapshot to indicate they moved to DEV_TEST.

3. Deploy to SIT, UAT, etc. Step 2 will be repeated for deployment into other

environments and tracked using the work item state to

indicate deployment to SIT, UAT, etc.

Table 5: CM Processes for Deploy to DEV_TEST Environment

Process Tools & Techniques

1. Development works on critical

DEV_TEST fix

Developer suspends current work and changes Repository

Workspace to Dev-Maint Stream.

Table 6: CM Processes for Critical Fixes to DEV_TEST Environment

http://www.csc.com/

NY-HX CM Plan Page 16 of 20
August 30, 2012

4.2 Change Management

The change management diagram below, provides an overview of the Change Request workflow

for Enhancement Requests, Defects, or scope changes (such as new User Stories), and how these

items will be implemented, tested and tracked using RTC, once they have been approved by the

CCB and/or in conjunction with the Scope Control Board (SCB). For additional information on

the Change Management Process, refer to the NY-HX Change Control Management Plan or the

Scope Management Plan located in the NY-HX SharePoint.

Figure 5: CM Request Workflow

http://www.csc.com/

NY-HX CM Plan Page 17 of 20
August 30, 2012

5 CONFIGURATION STATUS ACCOUNTING

Configuration status accounting (CSA) is the recording and reporting of information that is needed to

manage a configuration effectively, including a listing of the approved program or project artifacts, the

status of proposed changes, and the implementation status of approved changes. It is concerned with

relating fully approved CRs, specifications and baseline documents and their associated parts. Different

baselines provide the foundation for status accounting. The objectives of CSA are to provide enhanced

coordination, visibility, accountability and management. CSA reports may be used to audit the baselines.

5.1 CSA Process and Records

In terms of tracking work items and the file changes made to satisfy the work item request, RTC

associates the file changes with the corresponding work item and allows users to create a query

that shows this association. These queries are used to assess product quality and CM

effectiveness at any given time in the program or product life cycle. Reporting on defects based

on change requests provides useful quality indicators and alerts management and developers to

critical areas of development. When tracking a build artifact back to the source that created it,

RTC provides snapshots that associate a baseline to the source so that at any given time, the

source that created the build artifact can be identified.

http://www.csc.com/

NY-HX CM Plan Page 18 of 20
August 30, 2012

6 DATA MANAGEMENT

Refer to the NY-HX Data Management Plan on the NY-HX SharePoint site.

http://www.csc.com/

NY-HX CM Plan Page 19 of 20
August 30, 2012

7 CONFIGURATION VERIFICATION AND AUDITS

Configuration verification and audits are accomplished to evaluate the conformance of software products

and processes to applicable guidance, plans, and procedures. The audits also confirm that baselines

contain all required artifacts and meet stated requirements. These activities determine the extent to which

an item satisfies the required functional or physical characteristics.

7.1 Configuration Integrity

Every build (team and integration) creates a snapshot with a standard naming convention that

matches the built artifact name (ear file). Auditors can trace build artifacts back to the snapshot

creating it. The CIs can be identified and built artifacts can be easily recreated. In addition,

reports can show all work items (User Stories, Defects) included in the snapshot as well as all CIs

changed in the snapshot.

7.2 Configuration Auditing

The CM team schedules and conducts Physical Configuration Audits (PCAs) and Functional

Configuration Audits (FCAs) prior to release in the production environment, to ensure the

configured hardware, software, and data baselines are in accordance with the CM processes.

http://www.csc.com/

NY-HX CM Plan Page 20 of 20
August 30, 2012

Appendix A GLOSSARY & ACRONYMS
Refer to the Master Project Management Deliverables Glossary and Acronym List posted in the

Deliverables Section of the NY-HX SharePoint site.

http://www.csc.com/

